Research Scientist @Google DeepMind

Language Model Augmented Relevance Score

ACL 2021
Language Model Augmented Relevance Score

We propose Language Model Augmented Relevance Score (MARS), a new context-aware metric for NLG evaluation. MARS leverages off-the-shelf language models, guided by reinforcement learning, to create augmented references that consider both the generation context and available human references, which are then used as additional references to score generated text. Compared with seven existing metrics in three common NLG tasks, MARS not only achieves higher correlation with human reference judgements, but also differentiates well-formed candidates from adversarial samples to a larger degree.